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In this paper, transverse waves propagating in an infinitely long, rotating Timoshenko
shaft subjected to axial forces are studied. The model includes the contributions of axial
deformation to the transverse vibration of the rotating shaft. Four different types of wave
motions, two cut-off frequencies and frequency spectra are defined and discussed. The
effects of rotation speed, axial force and axial deformation on the frequency spectra, phase
velocity and group velocity are examined. It is found that the wave motions are generally
independent of the rotation speed and the axial load significantly affects the wave motions
at small real wavenumbers.
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1. INTRODUCTION

Rotating flexible shafts are one of the most commonly employed mechanical elements for
power transmission in industrial machines such as gas turbines, internal combustion
engines and turbogenerators. Recent demands on the performance of these machine
elements at high speeds and the application of lighter components require more reliable,
failure–safe elements and the use of more accurate models for analysis. Three beam
theories, the Euler–Bernoulli, Rayleigh and Timoshenko models, are commonly employed
to examine the transverse vibrations of rotating flexible shafts. In the Timoshenko model,
both the rotary inertia and shear deformation effects are included. As more accurate
analyses are required, it is recognized that the Timoshenko theory is needed to accurately
predict the frequencies and vibration modes of stubby beams [1] used in such applications
as automotive crank-shaft mechanisms.

Numerous studies of the vibrations of rotating shafts employing the three beam theories
have been presented and well documented [2–4]. A consistent modelling of rotating
Timoshenko shafts subjected to axial loads by applying a finite strain beam theory and
Hamilton’s principle was proposed in reference [5]. Other studies focus on the development
of techniques to investigate the dynamic response and vibrations of different rotating shaft
models. Katz et al. [6] introduced a finite integral transform method for evaluating the
transient response of rotating Rayleigh and Timoshenko shafts. An alternative approach
to the same problem was presented by Han and Zu [7]. They used a modal analysis
technique and extended the work of reference [6] to the response analysis of Timoshenko
shafts with general boundary conditions. Recently, Tan and Kuang [8] obtained exact,
closed-form solutions for the free and forced responses of a stepped, rotating Timoshenko
shaft by the distributed transfer function method and a generalized displacement
formulation.
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In addition to being a more refined theory, the Timoshenko beam model has two
frequency spectra [9, 10]. The first spectrum corresponds primarily to the classical beam
bending, while the second spectrum is a result of including shear deformation in the model.
Abbas and Thomas [9] argued that the second frequency spectrum could only be found
in the case of a hinged–hinged beam. However, Bhashyam and Prathap [10] applied a linear
finite element method to show that this frequency spectrum also existed in other cases of
boundary conditions. Three different component or constituent modes of vibration, the
Euler–Bernoulli, simple shear and pure shear modes (hereafter denoted by E-B, SS and
PS, respectively) were defined to explain the vibration of a Timoshenko beam at various
frequencies [9, 10]. Table 1 summarizes the characteristics of each constituent mode in
comparison to the Timoshenko model. The vibration of a Timoshenko beam is considered
to be a combination of these constituent modes.

The vibrations of simple elastic structures such as strings, beams, and plates can be
described in terms of waves propagating and attenuating in waveguides. The subject of
wave motions has also been studied extensively in the fields of acoustics in fluids and solids
[11–13]. One of the advantages of applying the wave propagation technique to study the
mechanical vibrations of structures is its ability to provide a compact and systematic
methodology to analyse complex structures such as trusses, aircraft panels with periodic
supports, and beams on multiple supports [14]. Using the phase-closure principle, Mead
[15] presented a method to calculate the natural frequencies of Euler–Bernoulli beam
models. By employing concepts of wave reflection and transmission, Mace [16] applied the
wave propagation approach to obtain the system natural frequencies of Euler–Bernoulli
beam models including waves of both propagating and near-field types. Despite the
usefulness of the wave propagation technique, it has seldom been applied to the problem
of a rotating flexible shaft, except in reference [17] where the effects of the rotation speed
on the frequency spectra and group velocity are examined for an infinitely long, rotating
Timoshenko beam.

This is a two-part study on the elastic wave motions in rotating Timoshenko shafts
subjected to axial loads. The purpose of this paper is to investigate the general
characteristics of the wave propagation by considering the infinitely long beam problem.
A sequel paper [18] examines the wave reflection and transmission under arbitrary
geometric discontinuities, support and boundary conditions. This manuscript is organized
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Figure 1. A rotating Timoshenko shaft model subject to axial loads.

as follows. The equations of motion and normalization are described in section 2. In
section 3, the frequency and cut-off frequencies are derived. General wave solutions and
the effects of rotation speed and axial load on the frequency spectra, phase velocity and
group velocity are then examined and discussed.

2. EQUATIONS OF MOTION

Consider a rotating Timoshenko shaft subject to axial loads, as shown in Figure 1. By
Hamilton’s Principle and a finite strain beam theory [5] which is geometrically exact and
capable of accounting for large shearing strains, axial strain, curvature, and twist, the
linearized equation governing the flexural motion of the rotating shaft is
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where U is the transverse displacement in the complex notation

U=UX + iUY , (2)

and UX and UY denote the displacements in the X and Y directions, respectively with respect
to a fixed reference frame, E the Young’s modulus, I the lateral area moment of inertia
of the cross-section, r the mass density, As the area of the cross-section, K the Timoshenko
shear coefficient, G the shear modulus, J the lateral mass moment of inertia of the
cross-section per unit length, Jp the polar mass moment of inertia of the cross-section
per unit length, and V the constant angular velocity of the shaft. In this model, damping
and axial deformation due to inertia are neglected. Note that the last four terms of
equation (1) involve the axial stiffness EAs . These additional linear terms are associated
with axial deformations and take into account the effects of axial extension on the
transverse displacements of the axially loaded Timoshenko shaft model. As will be shown,
these effects become more pronounced as the magnitude of the axial load increases and
as the wavelength becomes small. The significance of these terms is also discussed in
reference [5].
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Introduce the following non-dimensional variables and parameters:
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U
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T
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, T0 =Xra2
0

KG
; (3a)
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E
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ra2

0

ET0
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ra0cs

E
V, o=

P
EAs

, (3b)

where a0 is the diameter of shaft and T0 is a characteristic time constant, cs =zKG/r is
the shear wave velocity, and o is the axial strain. Employing 2J= Jp in equation (1) for
circular beams yields the normalized equation of motion
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The equation of motion governing the rotation (due to bending) of the cross-section of
an infinitesimal element of the shaft model can be obtained in the same manner as
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where C is the measurement of the slope of the cross-section due to bending in the complex
notation. The transverse shearing deformation is measured by the difference
i(1u(z, t)/1z)−C(z, t).

3. PROPAGATION OF HARMONIC WAVES

Since a vibrating beam is a dispersive medium for transverse waves, the phase velocity
c is not constant. Hence, the simple wave solution of the form f(z2 ct) with constant phase
velocity c does not satisfy equations (4) and (5). In a complex wave with several frequency
components, each component travels at a different speed, thereby distorting the shape of
the wave. To study the wave propagation in this Timoshenko shaft model, it is necessary
to first determine the conditions under which the following wave solutions,

u(z, t)=Cu ei(ḡz+ v̄t), C(z, t)=CC ei(ḡz+ v̄t), (6a, b)

satisfy the equations of motion, where ḡ and v̄ are the non-dimensionalized wavenumber
and frequency, respectively, and are defined as

ḡ= ga0, v̄=va0/cs . (6c)

Note that from the kinematic relationship

12u
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12u
1z2 + i01+ o−

o

a1 1C

1z
, (7a)
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the wave amplitudes Cu and CC , are not independent, and their amplitude ratio is

CC

Cu
=

v̄2 − ḡ2

ḡ(1+ o− o/a)
. (7b)

The propagation direction has arbitrarily been selected in equations (6a, b).
Substituting the harmonic wave solution (6a) into equation (4) leads to the frequency

equation

av̄4 −2bv̄3 −$(1+ a)ḡ2 +16a(1+ o)01+ o−
o

a1%v̄2 +2bḡ2v̄

+ ḡ2$ḡ2 +16o01+ o−
o

a1%=0, (8)

or in terms of the wavenumber ḡ,

ḡ4 −Aḡ2 +B=0, (9a)

where,

A=(1+ a)v̄2 −2bv̄−16o(1+ o− o/a),

B= v̄2[av̄2 −2bv̄−16a(1+ o)(1+ o− o/a)]. (9b, c)

Taking the long-wavelength limit (ḡ:0) of equation (9a) leads to

B=0 or v̄2$av̄2 −2bv̄−16a(1+ o)01+ o−
o

a1%=0. (10)

Solving for the roots of the above equation gives

v̄I
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a
2X0ba1

2

+16(1+ o)01+ o−
o

a1, (11a, b)

where v̄c denotes the cut-off frequency and the superscripts I and II denote the
corresponding wave propagation modes. Note that the Euler–Bernoulli beam model has
only one cut-off frequency v̄c =0 for the flexural mode. But the Timoshenko shaft model
has two cut-off frequencies, v̄I

c and v̄II
c , leading to the first frequency spectrum (hereafter

denoted by SI) and the second frequency spectrum (SII), respectively. The vibrating motion
of the rotating shaft corresponding to each cut-off frequency can be identified by
examining the amplitude ratio between the two wave solutions u(z, t) and C(z, t), see
equations (7b). When v̄:v̄I

c , equation (7b) reveals that Cu $ 0 and CC =0, so that the
shaft experiences a rigid body motion with C=0 (i.e., no rotation of the cross-section of
the infinitesimal element). When v̄:v̄II

c , equation (7b) reveals that Cu =0 and CC $ 0,
implying a shearing motion wherein all cross-sections of the shaft rotate back and
forth in unison. Hence, at v̄II

c , the vibrating shaft experiences no transverse displacement,
that is

u(z, t)=0 and C(z, t)=CC eiv̄II
c t. (12)

This solution corresponds to the pure shear mode [10] of the rotating Timoshenko shaft
model.
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4. FREQUENCY SPACES AND GENERAL WAVE SOLUTIONS

Before presenting numerical results for the frequency spectra of the rotating Timoshenko
shaft model, the frequency equation is further analysed by examining the algebraic
relations between the wavenumber and the coefficients A and B in equations (9a). This
analysis leads to a better understanding of the relationships between wavenumbers and
frequencies, and criteria for determining the proper wave solutions under a given set of
physical parameters. The four roots of equation (9a) are

ḡ=2
1

z2
(A2zA2 −4B)1/2. (13)

For aq 0 and =o=Q 1 (o is the actual strain of an elastic solid), numerical results over a
wide range of physical parameters show that the discriminant A2 −4B is semi-positive
definite for most engineering applications. Employing this fact and assuming that v̄ is real,
it can readily be shown that ḡ is either real or imaginary. The general wave solutions can
then be classified into four cases as follows.

Case I (Aq 0 and Bq 0; all roots of equation (9a) are real)

u(z, t)= (C+
1 e−iḡ1z +C−

1 eiḡ1z +C+
2 e−iḡ2z +C−

2 eiḡ2z) eiv̄t; (14a)

Case II (Aq 0 and BQ 0; two roots of equation (9a) are real and two are imaginary)

u(z, t)= (C+
1 e−iG�1z +C−

1 eiG�1z +C+
2 e−G�2z +C−

2 eG�12) eiv̄t; (14b)

Case III (AQ 0 and Bq 0; all roots of equation (9a) are imaginary)

u(z, t)= (C+
1 e−ḡ1z +C−

1 eḡ1z +C+
2 e−ḡ2z +C−

2 eḡ1z) eiv̄t; (14c)

Case IV (AQ 0 and BQ 0; two roots of equation (9a) are real and two are imaginary)
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and the coefficients C+ and C− denote positive-travelling and negative-travelling waves
from the origin of disturbance along the Timoshenko shaft, respectively. In all the figures
presented in this paper, system parameters adopted from Katz et al. [6] are used:
a0 =0·0955 m, r=7700 kg/m3, E=207×109 N/m2, G=77·7×109 N/m2, and K=0·9.
Unless otherwise stated, the overbar for non-dimensional variables is dropped hereafter
for convenience.

Figures 2 and 3 plot the frequency spaces demarcated by the cut-off frequencies (B=0)
and A=0, as functions of b and o. As shown in the figures, the wave solution of Case
III does not exist in the real frequency space since this solution dictates that none of the
wave components can propagate. This case is of no interest in engineering applications.
Therefore, in each demarcated region of the frequency spaces, one of the three wave
solutions (Cases I, II, and IV) governs the wave motion. Figure 2 plots the frequency
spaces corresponding to the general wave solutions for three different loading conditions
as a function of the rotation speed. Figure 2(a) shows that in the presence of a compressive
loading, the frequency for A=0, BQ 0 is complex, and it becomes real at a sufficiently
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Figure 2. Frequency spaces demarcated by A=0 (––) and non-zero cut-off frequencies B=0 (- - -) as a
function of rotation speed; a=0·3378. (a) o=−0·05, (b) o=0, (c) o=0·05. Dotted curve ( · · · ) indicates that
v is complex.
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Figure 3. Frequency spaces demarcated by A=0 (––) and non-zero cut-off frequencies B=0 (- - -) as a
function of axial load; a=0·3378. (a) b=0, (b) b=0·05, (c) b=0·1. Also shown are A=0 (- · -) and B=0
(- · · -) when effects of axial deformation are neglected. Dotted curves ( · · · · ) indicate that v is complex.
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high rotation speed where the demarcation curve bifurcates (at point Q) and the gyroscopic
effect dominates the effect of the axial loading. However, this high rotation speed is in
general not attainable in practical engineering appllications. Hence, in the range of
practical operating rotation speeds, it can be concluded that Case I and Case II solutions
govern the wave motions of a Timoshenko shaft subject to compressive loads. As in the
case of Figure 2(a), Figures 3(a–c) also show that, when the rotating shaft model is
subjected to compressive loads, only two wave solutions govern the entire frequency spaces
for practical engineering applications. In Figures 3(a–c), the dot-dot-dashed demarcation
curves show the differences when the shaft is modelled as axially inextensional. It is clearly
seen that the demarcation curves are not closed in these cases. This means that the
demarcation curves are still well defined as the compressive load increases beyond o=−1.
These situations are physically unacceptable.

4.1.  

The effects of the rotation speed on frequency and group velocity spectra have been
examined in reference [17] for a shaft under no axial load. It is shown that, in the range
of practical operating conditions, the rotation speed has little influence on the wave
propagation characteristics. In this study, the effects of rotation speed and axial load on
the wave motions are investigated for a shaft model including the contributions of the axial
deformation.

Figure 4 plots the real frequency spectra against the real and imaginary parts of g for
three rotation speeds and o=0. It is seen that the Timoshenko shaft model has two
distinct frequency spectra. Following references [9, 10], the first frequency spectrum SI

(lower branch) can be identified as the improved frequency spectrum of the simple
Euler–Bernoulli shaft model. The vibration of the shaft is a coupled E–B and SS mode,
with the E–B mode dominating at low g and the SS mode dominating at high g. Below
SI, none of the wave components can propagate. The second frequency spectrum SII (upper

Figure 4. Non-dimensional real frequency spectra of an infinitely long Timoshenko shaft for three rotation
speeds; a=0·3378 and e=0; b=0 (––), b=0·05 (- - -), b=0·1 (- · -); (a) as function of Im[g], (b) Re[g].
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Figure 5. Non-dimensional real frequency spectra of an infinitely long Timoshenko shaft for three loading
conditions; a=0·3378 and b=0; o=0 (––), o=0·05 (- - -), o=−0·05 (- · -), o=−0·05 with effects of axial
deformation neglected (- · · -); (a) as function of Im [g], (b) Re [g].

branch) represents a coupled SS and PS mode, with the PS mode dominating. From
equations (14a–d), depending on the rotation speed and axial load, the vibration of the
shaft below vII

c is governed by the wave solution of Case II or IV. While the shaft vibration
above vII

c is governed by the wave solution of Case I. Note that for the wave solutions
of Cases II and IV, imaginary wavenumbers also exist and these are plotted in Figure 4(a).
Figure 4 is useful for determining the proper wave solutions of the finite shaft problem.
Suppose the natural frequencies are estimated from some experimental data. The
parameters A and B are first calculated to determine the type of wave solution. The
corresponding wavenumbers are then obtained from Figure 4. Substituting these solutions
into one of equation (14) and imposing the boundary conditions leads to solutions for the
eigenfunctions of the finite rotating shaft. Note that only backward propagating wave
solutions (C− components) are plotted in Figure 4. A similar set of curves can be obtained
for negative v.

Figure 4 shows that the effects of the shaft rotation speed are more significant on SII

than SI. Indeed, SI is basically independent of b, even at very high rotation speeds (b=0·1
is about 90 000 r.p.m.). In Figure 4(a), the spectrum SI increases with Im[g] (attenuating
waves), while SII decreases with Im[g] until the two frequency spectra coalesce at a certain
wavenumber; e.g., at Im [g]=1·48 in the b=0 case. For imaginary wavenumbers greater
than this critical value, the two spectra are identical, and the frequencies are complex with
diminishing real parts. Interpretation of complex frequency spectra in rotating
Timoshenko shafts is not addressed here and will be examined in another paper. It is
noted that, with increasing Im[g], the real part of the frequency vanishes (i.e., v becomes
imaginary) in the b=0 case, but remains non-zero in the b$ 0 cases. This implies that
the rotation of the shaft causes an otherwise non-oscillatory temporal response to
become oscillatory (with growing or decaying amplitudes depending on the sign of
Im [v]).
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Figure 5 plots the real frequency spectra versus the real and imaginary wavenumbers
for three loading conditions and b=0. Comparing Figure 5(b) with Figure 4(b), it is seen
that the effects of the axial load on both frequency spectra are stronger than those of the
rotation speed. The compressive load decreases SI and increases SII. In other words, for
a given frequency, the wavelengths of SI propagating waves are shortened while the
wavelengths of SII propagating waves are lengthened when the rotating shaft is being
compressed. Application of a tensile load has the reverse effects. Note that, when a
compressive load is applied to the shaft, there exists a critical wavenumber gc below which
the frequency is imaginary (numerical results show that the frequency is positive
imaginary). Hence, no SI wave can propagate in the range 0Q gQ gc . The effects of the
axial load on the attenuating waves are shown in Figure 5(a). For a given frequency and
when the shaft is compressed, Im [g] decreases for SI waves and increases for SII waves.
Thus, in the presence of a compressive load, the rate of attenuation becomes smaller for
SI waves. Again the tensile load has the reverse effects.

The dot-dot-dashed curves in Figure 5 are the results when the effects of axial
deformation are neglected in the model. Only the case of compressive loading is shown.
It is seen that the effects of the axial deformation are insignificant for the SI spectrum, while
frequencies are increased (over-predicted) for the SII spectrum. Numerical results show that
this over-prediction increases with the axial strain. Therefore, the effects of axial
deformation should be considered in wave propagation studies; this is discussed in
reference [18] on the wave reflection and transmission in rotating Timoshenko shafts under
general supports, discontinuities and boundaries.

4.2.     

Applying the relationship v= cg to equation (8) gives the dispersion equation

(c2 −1)(ac2 −1)g4 +2bc(1− c2)g3 −16a01+ o−
o

a1$(1+ o)c2 −
o

a%g2 =0, (15)

where c is the phase velocity. Vanishing of the first term in equation (15) gives the
asymptotic behaviour (g:a) of the dispersion curves,

c2
a =1 and c2

a =
1
a

, (16)

or expressed in terms of dimensional physical parameters (note that overbar for
non-dimensional variables has been dropped for convenience),

ca =2XKG
r

=2cs and ca =2XE
r

=2c0, (17)

where cs is the shear velocity and c0 is the wave velocity of a bar. Note that the asymptotic
phase velocities ca in equation (17) are independent of the rotation speed and the axial
load. Hence, phase velocities are always bounded at large wavenumbers and there are two
operative modes (corresponding to the SI and SII spectra).
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Figure 6. Non-dimensional phase velocity as a function of real wavenumber for three rotation speeds;
a=0·3378, o=0; b=0 (––), b=0·05 (- - -), b=0·1 (- · -).

Figure 7. Non-dimensional phase velocity as a function of real wavenumber for three loading conditions;
a=0·3378, b=0; o=0 (––), o=0·05 (- - -), o=−0·05 (- · -), o=−0·05 with effects of axial deformation
neglected (- · · -).
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Figure 6 shows the effects of the rotation speed on the phase velocity as a function of
Re [g], i.e., for propagating waves. Note that only (positive) phase velocities for backward
propagating waves are shown. Two distinct dispersion curves, approaching the asymptotic
values of 1 and 1/za, are seen in the figure. Moreover, the phase velocity of the SI mode
is upper bounded by the shear velocity, while the phase velocity of the SII mode is lower
bounded by the bar velocity. Again, the effects of the rotation speed are rather
insignificant, especially for the SI mode. For the SII mode, the phase velocity increases with
the rotation speed. However, the differences are small even at high rotation speed
(b=0·053 44 560 r.p.m.).

Figure 7 shows the effects of the axial load on the phase velocities of propagating waves.
It is seen that the axial load has significant influence on the phase velocities of SI waves
at low wavenumber (long wavelength), while its effects on SII waves are relatively
insignificant. Applying a compressive load decreases the phase velocities of SI waves and
increases those of SII waves. A tensile load has the reverse effects. For SI waves with
wavenumber smaller than gc and under compressive loads, numerical results show that the
phase velocities are positive imaginary. This implies that the wave amplitudes decay
temporally. Under tensile loads, the phase velocities of SI waves with long wavelength are
relatively high (based on c0 of 5200 m/s, the minimum phase velocity of the dashed curve
in Figure 7 for SI waves is about 1000 m/s which is about three times the speed of sound).
In Figure 7, the dot-dot-dashed curves show the phase velocities of the waves under
compressive loads and with the effects of the axial deformation neglected. These effects
are rather insignificant for both modes.

Figure 8. Non-dimensional group velocity as a function of real wavenumber for three rotation speeds;
a=0·3378 and o=0; b=0 (––), b=0·05 (- - -), b=0·1 (- · -).
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Figure 9. Non-dimensional group velocity as a function of real wavenumber for three loading conditions;
a=0·3378 and b=0; o=0 (––), o=−0·05 (- - -), o=0·05 (- · -), o=−0·05 with effects of axial deformation
neglected (- · · -).

Another important property of waves propagating along a dispersive elastic waveguide
is the group velocity cg which is defined as the slope of the frequency spectrum

cg =
1v

1g
. (18)

It is known that the group velocity and the phase velocity are equal only for waves
propagating in non-dispersive media. The group velocity represents the aggregate
behaviour of a number of waves travelling with different phase velocities. It can be shown
from equation (15) that lim

g:a
cg = cs for the SI mode and lim

g:a
cg = c0 for the SII mode; the

same asymptotic values as the phase velocity.
Figure 8 shows the effects of the rotation speed on the group velocities of propagating

waves. As seen in the figure, the three curves in each mode are hardly distinguishable from
each other. Hence, the rotation speed does not affect the group velocities of both SI and
SII modes. Figure 9 plots the group velocity as a function of real wavenumber (propagating
waves) for three axial loads. It is noted that when the shaft model is under a compressive
load, the group velocities of SI waves are infinite at gc and rapidly approach the asymptotic
value of 1. Numerical results indicate that cg is complex for gQ gc , implying that wave
energy does not propagate at small wavenumbers since energy propagates at the group
velocity [11–13]. When a tensile axial load is applied, the group velocities of SI waves are
significantly higher at low wavenumbers; this has also been observed in Figure 7 for the
case of the phase velocity. On the other hand, the effects of the axial load on SII waves
are insignificant. Moreover, contributions of the axial deformation are small for both SI

and SII waves. Comparing Figures 6 and 7 with 8 and 9, it is seen that the group velocities
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of SI waves are always greater than the phase velocities, resulting in anomalous dispersion.
However, the group velocities of SII waves are always smaller than the phase velocities,
resulting in normal dispersion.

5. SUMMARY AND CONCLUSIONS

The wave propagation in an infinitely long, rotating Timoshenko shaft subjected to an
axial load is studied in this paper. The equations of motion are based on a finite strain
theory including the contributions of the axial deformation to the transverse vibrations.
Two cut-off frequencies corresponding to two frequency spectra are obtained. It is shown
that the general wave solutions can be classified into four different cases (Cases I–IV as
defined in equations (14a–d)). However, in engineering applications, Case III does not
exist. The effects of the rotation speed and the axial load on the frequency spaces are
examined. It is found that, in the presence of a compressive load and in the range of
practical rotating speeds of the flexible shaft, the solutions of Cases I and II govern the
wave motions in the shaft. The wave solution above the finite cut-off frequency is of Case
I, while the wave solution below it is of Case II or Case IV.

The effects of the rotation speed and the axial load on the chracteristics of wave
propagation in the rotating Timoshenko beam are further examined in terms of the
frequency spectra, phase velocity and group velocity. some major conclusions are
summarized as follows. (1) The rotation speed has no effect on the first frequency spectrum
(SI). However, the rotation speed increases the frequencies in the second spectrum (SII).
For a non-rotating shaft, the temporal response of attenuating waves is non-oscillatory
beyond a certain Im[g]. When the shaft is rotating, the temporal behaviour of these waves
becomes oscillatory. (2) The effects of the axial load on both frequency spectra are stronger
than those of the rotation speed. When the rotating shaft is compressed, there exists a
critical real wavenumber (gc ) below which no SI wave can propagate. It is also shown that
the effects of axial deformation are insignificant for the SI spectrum, while frequencies are
increased (over-predicted) for the SII spectrum. Numerical results show that this
over-prediction increases with the axial strain. (3) The rotation speed has almost no effect
on both the phase velocity and the group velocity, except for a small increase in the phase
velocity of the SII waves. It is also shown that both the phase velocities and the group
velocities of the two spectra have the same asymptotic behaviour and are bounded by the
shear wave velocity and the wave velocity of a bar. (4) The effects of the axial load on
both the phase velocity and the group velocity are similar. It is found that the axial load
is important only for SI waves with long wavelength. In particular, a tensile load
significantly increases the velocities. Under a compressive axial load, both the phase and
group velocities are positive imaginary for real wavenumbers below gc , implying that the
wave amplitudes decay temporally and that wave energy does not propagate.
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